
A Model Checker for AADL
Experimental Results

Marco Bozzano2, Alessandro Cimatti2, Joost-Pieter Katoen1,
Viet Yen Nguyen1, Thomas Noll1, Marco Roveri2, and Ralf Wimmer3

1 RWTH Aachen University, Germany
2 Fondazione Bruno Kessler, Italy

3 Albert-Ludwigs-University Freiburg, Germany

1 Introduction

This document contains some experimental data for the COMPASS toolset,
described in the paper “A Model Checker for AADL”.

2 Description of the Experiments

The following tests have been carried out, and the results analyzed:

– BDD-based model checking
– SAT-based model checking
– fault tree generation
– performability evaluation
– dynamic fault tree verification

The tests have been chosen as representatives of the different analysis tasks
and techniques (qualitative and quantitative, BDD versus SAT) available in the
COMPASS toolset.

3 Models

The following models have been used to run the analyses (all the models are
parametric):

Adder A parametric version of the adder example in the COMPASS toolset
distribution. The adder has one layer with N generators and N bit modules
(where N is a parameter) and successive layers with N/2, N/4, . . . 1 adders.
The following properties have been tested. For model checking, no faults were
injected. Four properties were verified. The first and second property state
that the inputs being all equal implies that the output of the outermost adder
is, respectively, zero or one; these properties may be true or false depending
on the number of input bits. The third and fourth property state that if it is
not the case that the inputs are all equal, then the output of the outermost

adder is, respectively, zero or one; these properties are always false. For fault
tree analysis, faults of type inverted for the bit modules were injected. The
following propositional property was used as top level event: all inputs are
equal and at least one bit module in the innermost layer has output one.
The generated fault trees are not empty (faults are needed to trigger the top
level event).

SensorFilter A parametric version of the sensorfilter example in the COM-
PASS toolset distribution. For performability evaluation, the number N in-
dicates the degree of redundancy, so for example for N = 4, it means the
example describes four redundant sensors and four redundant filters. An in-
jection is made on each sensor’s output, by setting it to 15 when the Dead
state is entered. A second injection is made on each filter’s output, by setting
it to 0 when the Dead state is entered. On each parameterised example, we
tested the property that computes the probability that the last sensor dies,
i.e., all sensors have died. For dynamic fault tree evaluation, N indicates the
amount of cut sets in the fault tree. An increasing number indicates a big-
ger fault tree. On each parameterised example, we computed the probability
that the top-level event is triggered.

4 Experimental Results

We present the corresponding analysis results, respectively, in Tables 1, 2, 3, 4
and 5. In the tables, the first column show the name of the model, the second
column its complexity4, and the third column the time needed to complete the
test (in seconds; note that 24 hours corresponds to 86400 seconds).

The timeout and memory limits were set to, respectively, 24 hours and 3 GB.
In the first two tables, for brevity, only some results are presented in tabular

form; moreover, for more clarity plots graph are presented in Figure 1 and 2 that
show how the computation times scale depending on the problem dimension.
The plots show the running time for each model, for increasing numbers of the
parameter N . The complexity of the adder models can be computed with the
following formula: 12 ∗ N + 5.

4 Appropriate notions of complexity are described for each table.

Model Complexity Time

adder 2 21 1.05
adder 5 55 1.78
adder 10 115 4.74
adder 15 175 8.91
adder 20 235 17.75
adder 25 295 32.03
adder 30 355 75.96
adder 35 415 571.66
adder 40 475 1786.30
adder 42 499 11297.04

Table 1. Test results for BDD-based model checking. The complexity is measured as
the number of Boolean variables in the encoding.

 0

 500

 1000

 1500

 2000

 0 5 10 15 20 25 30 35 40 45

T
im

e
(s

ec
s.

)

Size (N)

Bdd-based Mc

Fig. 1. Plot of results for BDD-based model checking. The size N is measured as the
number of Boolean variables in the encoding.

Model Complexity Time

adder 2 21 0.93
adder 5 55 1.44
adder 10 115 1.40
adder 15 175 1.79
adder 20 235 2.06
adder 25 295 2.73
adder 30 355 4.01
adder 35 415 4.39
adder 40 475 5.68
adder 45 535 6.77
adder 50 595 8.96
adder 55 655 9.88
adder 60 715 12.98
adder 65 775 15.17
adder 70 835 17.43
adder 75 895 26.67
adder 80 955 44.78
adder 85 1015 36.19
adder 90 1075 59.85
adder 95 1135 56.56
adder 100 1195 45.41
adder 105 1255 58.57
adder 110 1315 89.72
adder 115 1375 61.10
adder 120 1435 66.93
adder 125 1495 103.66
adder 130 1555 75.12
adder 135 1615 80.24
adder 140 1675 84.64
adder 145 1735 83.96
adder 150 1795 144.27
adder 155 1855 100.71
adder 160 1915 160.54
adder 165 1975 108.00
adder 170 2035 106.64
adder 175 2095 159.51
adder 180 2155 153.68

Table 2. Test results for SAT-based model checking. The complexity is measured as
the number of Boolean variables in the encoding.

Model Complexity Time

adder 2 19 0.48
adder 3 31 1.06
adder 4 43 1.82
adder 5 55 3.99
adder 6 67 7.84
adder 7 79 105.85
adder 8 91 335.96
adder 9 103 1671.63

Table 3. Test results for fault tree generation. The complexity is measured as the
number of Boolean variables in the encoding.

Model Complexity Time

sensorfilter 2 2 4.05
sensorfilter 3 3 16.96
sensorfilter 4 4 74.21
sensorfilter 5 5 273.43
sensorfilter 6 6 861.69
sensorfilter 7 7 2677.01

Table 4. Test results for performability evaluation. The complexity is measured as the
amount of redundant sensors and filters.

Model Complexity Time

sensorfilter ft 1 1 0.50
sensorfilter ft 2 2 1.01
sensorfilter ft 3 3 10.53
sensorfilter ft 4 4 92.29
sensorfilter ft 5 5 2486.07
sensorfilter ft 6 6 38337.98

Table 5. Test results for dynamic fault tree verification. The complexity is measured
as the amount cut sets in the fault tree.

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120 140 160 180 200

T
im

e
(s

ec
s.

)

Size (N)

SAT-based MC

Fig. 2. Plot of results for SAT-based model checking. The size N is measured as the
number of Boolean variables in the encoding.

