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Abstract

COMPASS is a toolset for model based verification, safety and performability
analysis of complex aerospace systems. It has been developed mostly under
funding of the European Space Agency (ESA), in response to the need of a
more formal and comprehensive approach to the problem of system-software
co-engineering.

It this document we discuss the COMPASS roadmap, that is, we identify the
COMPASS objectives, the current status and the future steps needed to reach
the objectives.



Chapter 1

Introduction

COMPASS is a toolset for the evaluation of system-level correctness, safety, de-
pendability and performability of on-board computer-based aerospace systems.
It supports a comprehensive process for system-software co-engineering, by cov-
ering requirements validation, functional correctness, safety and dependability
analysis, performability analysis, fault detection, identification and recovery,
and contract-based design.

The COMPASS toolset has been developed since 2008, with funding of
the European Space Agency, by Fondazione Bruno Kessler (FBK), Trento,
and RWTH Aachen University, in several projects such as COMPASS [29],
AUTOGEF [7], FAME [33], HASDEL [37], D-MILS [31], CITADEL [28] and
CATSY [2I]. COMPASS is the original ESA-funded project where the toolset
was first developed. AUTOGEF, FAME, HASDEL and CATSY are follow-up
ESA-funded projects focusing on different extensions, namely the FDIR de-
velopment and synthesis, the modeling and verification of failure propagation
information, the extension of RAMS (Reliability, Availability, Maintainability
and Safety) to the specific (real-time) needs of launcher systems, and finally
the definition of a Catalogue of System and Software Properties (CSSP), to be
derived from a taxonomy of requirements. The D-MILS project and its follow-
up CITADEL, on the other hand, are two EU-funded project that focus on the
compositional system construction and assurance for the design and certification
of distributed systems, and its extension to adaptive systems.

More recently, the COMPASS3 project has addressed the consolidation of
the COMPASS toolset and the release of a new version: COMPASS 3.0, which
is the starting point for the discussion of the COMPASS roadmap in the present
document. Fig.[I.I]shows a historical perspective of the COMPASS toolset ver-
sions, where COMPASS release 2.2 and 2.3 were delivered in the COMPASS
project, COMPASS release 3.0 in the COMPASS3 project, and the other re-
leases were part of their respective projects. Here, arrows represent dependen-
cies/functionality inclusion between different projects/releases.

In this document, we develop the COMPASS roadmap. More concretely, we
discuss the COMPASS objectives, we analyze the current status of COMPASS,
and discuss the future steps to reach the objectives. The document is structured
as follows:

e In Chapter [2| we identify the COMPASS objectives.
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Figure 1.1: COMPASS toolset versions.

e In Chapter [3| we describe the current status of COMPASS.
e In Chapter [4] we discuss the future of COMPASS.

e In Chapter p| we present the action planning.



Chapter 2

COMPASS Objectives

In this chapter we identify the COMPASS objectives. We first discuss toolset,
process and research objectives, then we identify our expectations regarding the
impact of COMPASS on the community at large, and finally we discuss the
integration with other ongoing activities at ESA.

2.1 Toolset

We identify the following objectives related to the toolset development, and
distribution.

T1 Enhance the usability of COMPASS. This includes enabling the use of differ-
ent input languages, supporting the integration with existing tool chains,
and improving and enriching the available functionality.

T2 Bring the COMPASS toolset to higher levels of technology readiness. This
includes making the toolset more robust and portable, improving the user
interfaces, and enhancing the scalability.

T3 Increase the accessibility of COMPASS. This includes licensing considera-

tions (compare Section [3.1.7)).

2.2 Process

We identify the following process-related objectives. We collect both objectives
that are relevant to the development process of the toolset itself, and the use of
the toolset in the system design process.

P1 Enhance the development infrastructure of the COMPASS toolset, in par-
ticular build upon continuous integration technologies, in order to make
the development of COMPASS more effective.

P2 Make COMPASS amenable to integration with existing standards, such as
the ECSS standard used in ESA.

P3 Make COMPASS amenable to supporting certification activities.



2.3 Research

We identify the following research objectives.

R1 Demonstrate the applicability of formal methods technologies for designing
(industrial) systems of realistic size.

R2 Explore research advances that can improve the applicability and scala-
bility of formal methods technologies, such as new algorithms and new
verification paradigms, or tuning existing routines and engines.

R3 Increase visibility of the research activity underlying the COMPASS toolset.
This includes publishing the results in international conferences and jour-
nals, presenting the results in tutorials, courses, PhD schools, and making
students interested in the field of formal methods applied to system design.

2.4 Community

A major objective of COMPASS is to increase the impact on the community at
large, including the research community and the industrial users. We identify
the following main goals.

C1 Improve visibility of the COMPASS toolset.

C2 Improve market penetration, including commercial exploitation, of the COM-
PASS toolset.

C3 Increase industrial usage of the COMPASS toolset.

In general, we think that, in order to push industrial usage, a policy based
on small steps is more likely to success than proposing a disruptive change.
Integration into current practices must be supported in order to enable the
uptake of COMPASS.

2.5 Integration with ESA Initiatives

Another important goal of COMPASS is the integration of the COMPASS
toolset into other ongoing ESA-related activities. Such integration will help
in positioning COMPASS within the overall design process of (aerospace) sys-
tems, and increase the potential for its usage in the community.

We identify the following COMPASS-related initiatives: TASTE, OSRA,
CSSP.

TASTE TASTE is a development environment dedicated to embedded, real-
time systems and was created under the initiative of the ESA back in 2008,
after the completion of a FP6 project called ASSERT. TASTE can be used
to design small to medium-size systems; it relies on formal languages and is
based on the idea of building “correct by construction” software. The modeling
language provides a mixture of languages used for different purposes: AADL
for the system-level view of the architecture and ASN.1 for data abstraction
and implementation, while different languages can be employed for behavior
specification, e.g. SDL. Finally, native support for property specification and
verification is lacking.



OSRA The Space AVionics Open Interface aRchitecture (SAVOIR) is an ESA
initiative to federate the space avionics community and to work together in or-
der to improve the way that the European space community builds avionics
sub-systems. In particular, the goal of the subgroup SAVOIR-FAIRE (SAVOIR
Fair Architecture and Interface Reference Elaboration) is to achieve the defini-
tion of an On-board Software Reference Architecture (OSRA). OSRA comprises
three architectural layers: the component layer, the interaction layer, and the
execution platform. The Space Component Model (SCM) is a reference imple-
mentation for the OSRA component layer.

CSSP CSSP is an ESA initiative for the definition of a Catalogue of System
and Software Properties, to be derived from a taxonomy of requirements and
to support the design of space systems with formal properties. ESA funded
two parallel studies to develop such a catalogue, one called CATSY and lead by
SSF with RWTH and FBK as subcontractors, the other lead by University of
Thessaloniki with EPFL and Thales as subcontractors.

We identify the following objectives.

I1 Integrate COMPASS and TASTE, in order to bridge the gap between archi-
tectural level design and system implementation and deployment.

I2 Make models used in COMPASS and TASTE compliant with the On-board
Software Reference Architecture.

I3 Define an FDIR reference architecture, by inspiration to OSRA, and make
COMPASS the reference tool for such architecture.



Chapter 3

Current Status of

COMPASS

In this chapter, we discuss the current status of COMPASS, and in particular we
identify strengths and limitations that may affect the impact of COMPASS and
its introduction in industrial practice. Chapter [4] will then discuss the strategy
and future steps needed to address the identified limitations.

3.1 Toolset

In this section we discuss issues related to the current status of development
and distribution of the COMPASS toolset.

3.1.1 SLIM Language

The SLIM language was originally designed as a dialect of AADL Version 1
[3], to meet the needs of the European space industry. The base language is
mainly focused on the architectural organization of a system under nominal
and degraded modes of operation. Our goal was to extend the language beyond
AADL focus, and define the architecture of a system by also analyzing its dy-
namic behavior, namely both its nominal and degraded modes of operation and
their interweaving. Moreover, we addressed modeling of partial observability,
timed and hybrid behavior, and probabilistic aspects, such as random faults,
repairs, and stochastic timing.

Successor activities of the original COMPASS project, in particular those
listed in Chapter [I} have created the need for adding further language features
and for changes in the semantics. This includes, among others, observability
and non-blocking attributes for ports, passive port connections (which do not
influence observable behavior), timing-related constructs (urgency and delays),
new security-related concepts (e.g., keys data types and encryption operations)
and annotations (akin to AADL annexes).

This has incurred several syntactic and semantic issues regarding the in-
terpretation and analysis of specifications by different implementations of the
COMPASS toolset. These design decisions also implied that the SLIM lan-
guage was incompatible with AADL, though strongly resembling it. For better



adoption, as indicated by the community, it made sense to bring SLIM and the
AADL closer together as existing AADL-based workflows can then be employed.
This also would allow COMPASS to focus on core functionality, while language
oriented tooling (such as the OSATE development environment [44]) is being
available from the AADL community.

One major goal of releasing the new modeling language version SLIM 3.0 was
therefore to provide a clear and unified definition of the syntax and semantics
of the SLIM language. This was accomplished by the elimination of useless con-
structs and the inclusion of selected constructs from previous projects such as
event-data ports, parameters, user-defined types, tuples, functions, time units,
urgent locations, and urgent transitions. At the same time, the semantics was
consolidated by resolving existing issues such as the interpretation of commu-
nication along event port connections, the encoding of integers as words and
the presence of non-deterministic inputs and of non-deterministic unconnected
ports.

COMPASS3 has also improved the alignment between SLIM and AADL
Version 2 [4], bringing the syntax of both languages together. This goal was
essentially achieved by employing AADL’s “properties” mechanism to extend its
syntax by SLIM-specific features like data types, special-purpose attributes of
architectural elements such as observability properties of events or default values
of data ports, and contracts for formalizing requirements on a component’s
behavior.

3.1.2 Modeling

Currently, the COMPASS toolset supports SLIM as input language. SLIM, as
described in Section [3.1.1} was defined to be a variant of AADL, which has a
consolidated user base in the academic and also industrial community. However,
there are several other languages that are being used in the current industrial
practice, for which COMPASS currently provides no support.

In general, the cost of modeling is a real barrier for adoption of a verifica-
tion toolset in the industry. Most industrial companies are not willing to adopt
languages that differ from those being used in their internal processes. More-
over, the COMPASS limitation to a single modeling language prevents re-use
of existing models. For these reasons, there is a need to address this limitation
with high priority. A direction to be investigated is enhancing COMPASS with
a front-end that can take different input languages and transparently convert
them into the internal format used by the verification engines. The internal
format, in this view, can be the common ground (both syntactically and seman-
tically) to link the different input languages. The mix-and-match integration of
models written in different languages, on the other hand, is perceived to be of
lower priority by the industrial community.

3.1.3 Integration with Design Environments

Similarly as for modeling languages, the integration of the COMPASS toolset
within consolidated modeling and design environments used in the industry
could also positively affect the adoption of COMPASS in the industry. Cur-
rently, there is no such integration.



3.1.4 Functionalities

COMPASS incorporates a wide range of verification functionalities that cover
many aspects of system design, from modeling to verification and validation.
These functionalities include requirements validation, functional correctness,
safety and dependability analysis, performability analysis, and fault detection,
identification and recovery. Moreover, COMPASS 3.0 integrates the contract-
based design functionality, which enables a component-oriented design based on
the specification of the components’ behavior (via assumptions and guarantees)
and iterative refinement.

The outcome of the 2015 COMPASS Workshop suggested the need for in-
tegrating additional functionalities. In particular, the following ones have been
identified: model validation (i.e., ensuring the quality of a formal model with
respect to what the user has in mind), model-to-model comparison (useful to
manage change and evolution, and for model re-use) and model documenta-
tion (i.e., generation of documentation and artifacts that can be useful for the
comprehension of models). The 2016 MBSSE Workshop also suggested to take
into account the issue of change management, in particular to deal with model
change and evolution,and traceability between models and analysis results.

3.1.5 Scalability

An important aspect that may impact the level of maturity, and technology
readiness level, of the COMPASS toolset is the scalability of its functionali-
ties. The COMPASS toolset is the outcome of a significant research effort,
and incorporates state-of-the-art edge verification technologies. COMPASS 3.0
incorporates further verification techniques such as advanced model checking
techniques, new engines and options, used for functional verification and safety
analysis, that aim at improving the scalability of these activities [I5] 17} 85l 27].
Moreover, the use of contract-based design techniques, that are amenable to
compositional verification, is a powerful approach to dominate the complexity
of verification.

However, it is well known that some analyses are inherently highly complex,
thus they may hinder the application of COMPASS to the most complex mod-
els. For these reason, further means of mitigation must be investigated. This
includes further tuning of the verification engines, and the use of techniques
that trade between the precision of results and the analysis effort.

3.1.6 Case Studies

The applicability of COMPASS has been demonstrated in several case studies in
the space domain and in other domains, see [19]. Moreover, within the COM-
PASS3 project, existing examples coming from different predecessor projects
have been systematized and extended, in order to be representative of all the
functionalities of the toolset. Hence COMPASS 3.0 now includes a more com-
prehensive suite of examples.

However, COMPASS is still lacking some bigger case studies, that may be
representative of realistic industrial systems. It is fundamental to have access
to such case studies, in order to improve the maturity and technology readiness
level of the toolset. Currently, such case studies either do not exist, or they



cannot be disclosed to the community since they are protected by confidentiality
agreements.

3.1.7 Software and Licenses

The COMPASS3 initiative has consolidated the COMPASS toolset in terms of
syntax and semantics, software architecture and software quality, user interfaces,
set of available functionalities, examples and documentation. COMPASS has
integrated and harmonized selected features from predecessor projects. More-
over, the quality of the software has been improved in several respects, such as
integration of more recent libraries, code re-factoring, and adherence to software
quality standards.

An important aspect to be considered, as part of future needs, is the licensing
schema. Currently, the licensing of COMPASS is limited to the ESA member
states. This is a significant limitation. While, on the one hand, this restriction
may help keeping a competitive advantage for ESA member states, on the other
hand, it prevents use and cross-fertilization with entities not residing in ESA
member states. In the past, the COMPASS Consortium has received requests
from entities based outside the ESA member states, including some important
US-based industrial companies in the areas of avionics and/or aerospace (e.g.,
Honeywell USA). These requests could not be granted, due to the licensing
limitation. We believe that lifting this limitation could bring important benefits
in terms of market penetration and industrial usage. Finally, an open-source
versus closed-source (development and release) schema should be evaluated.

3.2 Process

Starting with the COMPASS3 project, the development infrastructure of COM-
PASS has been enhanced, and now includes continuous integration capabilities.
Specifically, the code base now resides on a GIT repository and can be accessed
via a GITLAB repository manager, that enable smooth concurrent development
between different teams. Furthermore, automatic testing capabilities have been
added, that carry out non-regression testing and benchmarking as part of devel-
opment. This infrastructure has proved to be very useful for the development
of the toolset, and may be further improved in the future. Finally, this schema
could be considered as a starting point to address continuous integration of
components at HW level.

Concerning the use of COMPASS in system development, currently COM-
PASS does not provide specific support for process-related activities, such as
the development phases foreseen by design standards, e.g. the ECSS standard
used in ESA. Areas where the COMPASS toolset could be improved include the
possibility to support the generation of artifacts foreseen by the standard and
used for design reviews and/or certification. Models produced using COMPASS
could also be used as artifacts to support such reviews and certification.

3.3 Research

The COMPASS toolset incorporates state-of-the-art technologies for formal
modeling and verification. Such technologies are the outcome of a substantial



research effort carried out by the research community and by the COMPASS
Consortium itself.

The research and technological content of the COMPASS toolset and of the
underlying methodologies has been reported in numerous publications (more
than 20 publications in international conferences and journals since 2008) and
presented in several talks and tutorials. Moreover, its effectiveness has been
reported in numerous studies involving real-world and industrial scenarios [I8]
42, [35].

Several research challenges remain open. A summary of the most promising
directions for future research is discussed in Section (4.3

3.4 Community

The community comprises all the stakeholders that are potentially interested in
the usage of the COMPASS toolset, including people from the European Space
Agency, national space agencies, industry and academia.

The COMPASS toolset, over the years, has been advertised and demon-
strated in several talks and tutorials organized at international conferences and
in other venues. Moreover, the COMPASS toolset has been downloaded and
evaluated by several entities in academia and industry (about 50 to 100 down-
loads per year from 2012 onwards).

An additional step towards involvement of the community in the COMPASS
effort was the organization of a COMPASS Workshop, of October 23, 2015,
at ESA. The objective was to identify hurdles of introducing COMPASS in
industrial practice, and discuss and explore ways these hurdles can be taken or
circumvented, with potential solutions both in technology as well as process.
Representatives of ESA and other agencies, industry and academia participated
in the workshop and provided useful feedback.

Despite these past actions and experiences, there is no solid support, yet,
for the COMPASS community as a whole, and further actions that go into
this direction are needed. Actions may include the organization of workshops
and other structured means to get feedback from the community. Currently,
we are preparing a questionnaire, to be submitted to all the potential users in
the COMPASS community. The questionnaire identifies a list of requirements
and/or potential solutions and will help us in prioritizing the actions.

Last but not least, the COMPASS consortium maintains an active relation
with the AADL community and, in particular, its standardization committee.
This shows up in in various presentations of COMPASS-related activities at
committee meetings, which lead to the inclusion of SLIM error modeling con-
cepts such as invisible error states and error state history in the Error Model
Annex of ADDL [2].

3.5 Integration with ESA Initiatives

In this section we discuss in more detail the relationships between COMPASS
and the other ESA initiatives identified in Section 2.5l

The overall picture comprising the ESA initiatives of COMPASS, TASTE,
OSRA, and CSSP is shown in Figure [3.1] The COMPASS toolset is intended

10



DESIGN

Figure 3.1: COMPASS, TASTE, OSRA and CSSP.

to cover the high level (upstream) requirements and architecture phases of the
development process, and to complement the TASTE toolset, which is dedicated
to downstream design and implementation phases. The artifacts resulting from
the upstream phases should be aligned with the SAVOIR, OSRA, and SAVOIR
tools could be used to perform useful analyses on the integrated tool chain.
Finally, the CSSP can be used as input for the formalization of properties.

The current status with regard to this vision is the following: there is cur-
rently no integration between COMPASS and TASTE, although both use AADL
for the system view description. However, a preliminary study [22] concern-
ing the model-based design of an energy-system embedded controller has done
a preliminary evaluation of TASTE, and identified some requirements of the
COMPASS/TASTE integration. No study has been performed to check the
alignment of COMPASS with the OSRA, although COMPASS is integrated
with OCRA, which is compliant with the Space Component Model, as shown
in the FOREVER study. Finally, the CSSP developed in the CATSY project is
fully integrated in COMPASS.

11



Chapter 4

The Future of COMPASS

In this chapter, we discuss the most relevant future developments of the COM-
PASS toolset, research directions and strategies, that can help address the lim-
itations identified in Chapter

4.1 Toolset

In this section we discuss the most promising future developments of the COM-
PASS toolset.

4.1.1 SLIM Language

An open direction is to further investigate the streamlining of SLIM with the
official AADL language. While COMPASS3 has already improved the alignment
between these two languages, there are additional points of investigation. At
the core level, the AADL extension mechanism, provided by means of annexes,
can continue to be used to implement new SLIM-specific constructs, as to not
interfere with the core AADL language. As outlined in Chapter [3] this makes
it possible to also work with SLIM models in existing AADL tools.

Other topics include the adaptation of SLIM to the recent version (V2) of
the Error Model Annex [2] and the upcoming release (V3) of AADL, which is
currently under development with a publication target date of 2018/19. That
revision will introduce new concepts such as compositional interfaces, configu-
ration support, virtual memory, and a number of other issues. Of particular
interest is a new unified type system, which may consolidate the SLIM type
system with that of AADL.

4.1.2 Modeling in Other Formalisms

The possibility for end users to model in languages other than SLIM is clearly
a plus that could bring significant advantages. In particular, it could enable the
use of COMPASS in industrial environments that have a consolidated modeling
and design process based on other languages. Moreover, it could facilitate the
re-use of existing models.

We intend to approach this issue by creating a front-end in COMPASS for
additional input languages. Among them, we may consider languages such as

12



SMV, Altarica, Simulink, or SysML. Translation back and forth from SLIM
and other modeling formalism is technically possible. In order to maintain the
alignment and semantic consistency between different models, the underlying
COMPASS-internal model or an appropriate meta-model could be used. More-
over, suitable interchange formats will need to be defined.

In general, many input languages are possible, and none will ever be a perfect
solution; suitable compromises will have to be sought. In the following section,
we sketch an approach to integrate Simulink models.

Integration with Simulink

Simulink is a modeling and simulation environment for model-based design
widely used in industry. Providing a Simulink frontend for COMPASS will def-
initely provide ease to the end users for interacting with COMPASS — without
the need to model in SLIM. Essentially the Simulink models can be translated
to the architectural intermediate representation of COMPASS. The integration
of Simulink with COMPASS would also open the opportunity to do contract-
based design and verification of the Simulink models. Another benefit of the
integration would be the possibility to show results at the Simulink level, e.g.
simulating the traces found by the COMPASS verification engines as test-cases
in Simulink. However, providing a full Simulink front-end to COMPASS would
be challenging — semantics issues and composition rules (synchronous versus
asynchronous) should be clarified. As an example, defining a contract in a
Simulink model would require to have some custom Simulink blocks — like as-
sume and guarantee blocks. Another challenging example is to deal with the
automatic fault extension (a feature of COMPASS), which requires further in-
vestigation.

In the opposite direction, the ability to convert SLIM models into Simulink
enables the use of Simulink based tooling. A particularly interesting aspect is
the ability to create a workflow around Model Driven Engineering (by means
of using Simulink for code generation). This direction of transformation also
comes with its own challenges, as some of the SLIM semantics do not translate
directly into Simulink, e.g. Simulink is more restrictive towards cyclic data
dependencies, and does not support continuous behavior like SLIM does.

4.1.3 Integration with Design Environments

The integration into design environments, such as Eclipse, has been evaluated.
The outcome of the 2015 COMPASS Workshop suggested that the development
of the COMPASS toolset would focus on developing and providing services
for integration, rather than directly taking on any integration activity. Many
interesting design environments and repositories of interest for integration exist,
and could therefore be targeted. Examples are the Electronic Data Sheet (EDS),
MATLAB, IVY, and AutoFOCUS3.

Another example is the coupling of Capella (architecture only, no behavior)
with the modeling capabilities of behavioral aspects in SLIM. In this respect,
preliminary work (starting point for evaluation and future developments) has
been done by Thales Alenia Space. In particular, it has been investigated during
a study aiming at defining a model-based approach for supporting the FDIR
process, and some prototyping activities have allowed to couple the COMPASS

13



toolset to Melody Advance (the Thales modeling tool currently released as the
open-source software named Capella).

4.1.4 Model Validation and Documentation

A functionality that is perceived as very important by the users is the possibil-
ity to assess the quality of a formal model. We propose to address this issue in
multiple ways. An option is to simulate with respect to an expected scenario.
Another possibility is model-to-model comparison, where the model under anal-
ysis is compared against a reference model. If the both models are formal, this
is similar to sequential equivalence checking. If the reference models is informal
(e.g. represented by a set of executions), a possibility is to check if the traces
can be re-executed on the model under analysis. Using simulators/emulators
is also another option. Finally, deriving structural properties of models such
as reachability matrices and presence of deadlocks could also support model
validation.

An important issue is change management. In particular, COMPASS should
be able to deal with model change and evolution, model re-use, and keep trace-
ability information between different models, and between models and analysis
results.

An industrial use case is documentation generation. In this area, we think
that it would be possible to generate graphical artifacts from formal models,
such as visualizing abstract machines or creating Message Sequence Charts.

4.1.5 Scalability

In order to mitigate the issue of scalability, additional investigations could be
carried out. This includes the potential incorporation of new engines and algo-
rithms, and tuning of existing routines. This effort is ongoing, for instance a
few new algorithms and verification options have been incorporated in COM-
PASS3, and additional ones may be incorporated in the future. As an example,
recent techniques to produce conservative estimates for fault tree probabilities
(anytime FTA) [I7] could be incorporated.

In order to measure and evaluate the progress, it is important to have bench-
mark sets and case studies of significant size, that can be used to profile the
verification engines and find bottlenecks and potential solutions.

4.1.6 Case Studies

A strategy for developing comprehensive case studies of industrial size is needed.
One possibility that is being pursued is the development of a case study done
by the COMPASS Consortium itself, possibly as a result of a joint activity
with ESA (e.g., as the outcome of a student internship in ESA). An alternative
possibility is to use an openly available case study from another ESA project,
such as the satellite case study that was used in the CSSP project or the solar
dish case study analyzed in the Contest project [22].

Another direction that is clearly worth investigating is the possibility to
directly involve industrial partners in this activity. The development of the case
study could be the outcome of an internal evaluation study or the deliverable

14



of a funded project. The feasibility of this schema may depend on interest and
commercial strategies of the industrial partner, and available funding.

4.1.7 Software and Licenses

We consider COMPASS 3.0 as a consolidated starting point for future develop-
ments. After the final release of COMPASS 3.0, our strategy would be to issue
periodic releases, when significant new features are incorporated. The docu-
mentation, including the user manual and tutorial, will be updated along with
the code.

Concerning the licensing limitations of COMPASS, a strategy that has been
preliminarily discussed with ESA during the COMPASS3 project could be to
open the license also to entities outside the ESA member states, with some
restrictions of use, or under some specific terms. For instance, as a counter-
balance, licensing to these entities might require granting back the possibility to
use some of the outcomes of the evaluation, such as evaluation reports and case
studies. The pros and cons of the different schemas (restriction to ESA member
states, or open) should be discussed and agreed upon with ESA. Finally, the
pros and cons of an open-source versus closed-source (development and release)
schema should be evaluated, e.g. the open-source schema could bring benefits
in terms of community development.

4.2 Process

The development infrastructure, based on continuous integration, used in COM-
PASS 3.0, will be further extended and improved, with the addition of further
non-regression tests and testing capabilities. Moreover, automated testing ca-
pabilities for the Graphical User Interface of the COMPASS toolset will be
investigated. Continuous integration at HW level can also be considered as an
interesting direction for future work.

Regarding the ECSS standard, future extensions include support for the pro-
duction of artifacts and design documentation that are required by the ECSS
standard, as a way to provide inputs for, and effectively improve, preliminary
and critical design reviews (PDR, CDR). Along the same line, COMPASS could
be extended to support the generation of artifacts that can be used for certifi-
cation purposes.

Finally, the ECSS standard itself could be updated to take into account
advances in model-based development, in particular the ‘models-as-deliverables’
paradigm. COMPASS could be used to support this view. More in general, the
ECSS standard could be updated to take into account the model-based system
engineering process, based on formal methods.

4.3 Research

There are several research areas that deserve investigation, and that suggest
potential extensions of the toolset in terms of additional design or verification
capabilities. In this section we have identified a few research challenges and
related developments that, in our opinion, are the most beneficial for the final
users.
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4.3.1 Property Validation

Since system properties are the formal counterpart of informal requirements, we
do not have a formal specification that can be used to verify their correctness.
Therefore, the problem of property validation, i.e., checking if the properties
specification captures the requirements intent, is of paramount importance. The
problem is exacerbated by the fact that requirements are often ambiguous and
flawed, as showed in many studies (e.g., [41]).

COMPASS provides validation of properties based on temporal logic satisfi-
ability (see, e.g., [26]). This enables checking consistency and performing other
queries on the property specification. However, it is restricted to linear-time,
discrete- or continuous-time, temporal logic. It does not deal with branching-
time logics such those involving probabilities. Integrating probabilities in the
linear-time settings and solving the satisfiability problem remains an open re-
search problem.

Another challenging problem related to property validation is checking the
realizability /implementability of the properties [, i.e., if the properties can be
implemented or constrain somehow the environment so that no implementation
can exist. A typical example of unrealizable properties are those that need
clairvoyance on the future (e.g., “the output must be true whenever in the
future the input will be true”). Providing practical solutions in the case of
infinite-state systems is an open research problem.

Finally, an interesting research direction is to exploit synthesis algorithms to
enrich debugging information, such as providing stronger/weaker specifications,
min/max bounds for delay or probabilities, or more in general synthesizing
automatically parts of the property specification. On these lines, the work on
contract tightening [23] already uses synthesis to provide tighter versions of the
contracts specification and can be further enhanced to be more effective with
different kinds of specifications.

4.3.2 Contract-Based Fault Injection

In COMPASS, Fault Tree Analysis can be performed either by means of the
“traditional” model-based approach, which computes the minimal cut set for
a top-level event, or by means of contract-based safety analysis, which pro-
duces a hierarchical fault tree that follows the specified contract refinement
(and thus the architectural decomposition). The two analyses are currently
disconnected: while the model-based safety analysis exploits the error model
specification to automatically inject faulty behaviors into the nominal model,
the contract-based approach identifies a failure by the fact that the component
implementation violates a guarantee or that the component environment fails to
satisfy an assumption. Thus, in the contract-based approach, in case of failure,
any behavior is possible. This may result in very pessimistic fault trees. An
interesting research direction is to find an effective way to inject the faults in the
contract specification in order to have degraded assumptions and guarantees in
case of failures.
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4.3.3 Dynamic Fault Tree Analysis

Dynamic fault trees (DFTs) are a well-known extension to standard fault trees
that cater for common dependability patterns, such as spare management, func-
tional dependency, and sequencing. Analysis of DFTs relies on extracting an un-
derlying stochastic model, such as Bayesian networks, continuous-time Markov
chains (CTMCs), stochastic Petri nets, etc. The expressive power of DFTs
is larger than that of static fault trees, and often leads to fault models that
are more succinct, and thus better comprehensible. This however, comes at
a price: the state-space generation process of DFTs is much more involved.
The COMPASS 3.0 toolset allows for the automated generation of DFTs with
priority-AND gates. An extension of this fault tree synthesis algorithm to gen-
erate full DFTs, with functional dependencies, spare gates, priority-OR gates
and so forth would be an interesting direction. This can be complemented
with techniques to generate state spaces for DFTs in a comprehensive manner
using various reduction techniques from the field of model checking — such as
symmetry reduction, partial-order reduction — and static analysis techniques
on DFTs. Initial experiments with these state-space generation techniques give
very promising results [50]. Partial state-space generation could give under-
and over-approximations of measures-of-interest on DFTs, and could boost the
generation process further.

A related study that may be taken into account is the ESA TRP called Ver-
iFIM [49] (Verification of Failure Impact by Model Checking), that addressed
the on-board prognosis perspective (pro-active FDIR). It was based on the sys-
tem DFT modeling and the translation to the Bayesian Networks, which were
then, off-line, translated to the Junction Trees for On-Board Prognostic FDIR
computations.

4.3.4 FDIR Design

The area of diagnosability and fault detection and identification (FDI) design
is particularly challenging. Recent work [15, [16] has addressed the extension
of diagnosis and FDI to incorporate the notion of delay, and to address cases
where diagnosability cannot always be guaranteed for all system executions, but
only locally. In [16], related aspects of an FDI design can be specified using a
general framework and a language for specification patterns, based on temporal
epistemic logic. Verification can be performed using an epistemic model checker
or reduced to standard temporal logic model checking based on the twin-plant
approach [25]. Incorporation of these features in COMPASS, and extensions
to continuous models, is still an open point. Moreover, the extension of this
framework to fault recovery and recoverability is still missing.

Another interesting research area concerns the analysis of observability re-
quirements for diagnosis, and the synthesis of a set of observables that are
sufficient to ensure diagnosability [I3]. It is possible to rank configurations of
observables based on cost, minimality, and diagnosability delay, thus helping de-
signers in finding the most appropriate configuration. Moreover, the automatic
synthesis of FDIR components has been considered in two COMPASS-related
projects, namely AUTOGEF [5] and FAME [I0], but is not yet available in
COMPASS. A full-fledged methodology, process, and tool support for the FDIR,
design process, starting from the FDIR requirements and exploiting the results
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of safety assessment, would be extremely beneficial. Preliminary results from
AUTOGEF and FAME are encouraging, however a substantial effort is needed
to consolidate these results and make them more mature.

Another error modeling concept to be investigated further are Timed Fail-
ure Propagation Graphs (TFPG), which enable a precise description of how and
when failures originating in one part of a system affect other parts — a funda-
mental feature for successfully designing contingency mechanisms. A TFPG is
a graph-like model that accounts for the temporal progression of failures and
for the causality between failure effects, taking into consideration time delays
and system (re-)configuration. The nodes of a TFPG represent either failures
or discrepancies (representing anomalous behaviors), whereas edges represent
propagation links, labeled with timing information (minimum and maximum
propagation time) and modes (system modes enabling the propagation) — see
an example in Fig. New COMPASS functionalities for TFPG analysis and
synthesis, such as the ones described in [14, 12, @], would be beneficial. In
particular, automatic tightening of TFPG nodes, coupled with the synthesis of
the TFPG graph, may be used to automatically produce a complete and tight
TFPG from a system model, given the definition of the TFPG nodes.
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Figure 4.1: An example TFPG

4.3.5 Design Space Exploration

An important problem, which is especially relevant in the early phases of the
design of safety-critical systems, is the ability to analyze the safety of alter-
native design solutions, comparing how different functional allocations impact
the overall reliability of the system. Different solutions may be evaluated using
formal techniques ranging from model checking to FTA.

Previous work in this area has been done in collaboration with NASA in
the context of the next generation air traffic control system for the United
States [42]B85]. Aspects that have been evaluated are the allocation of separation
assurance capabilities (traditional ground-separated aircraft, and self-separated
aircraft) and the required communication between agents. To deal with the ex-
tremely high number of designs (more than 20,000), a new compositional, mod-
ular, and parameterized approach was used. Such approach combined model
checking with contract-based design to automatically generate large numbers of
models from a possible set of components and their implementations. Results
were validated by NASA system designers, and helped identify novel as well as
known problematic configurations. We plan to integrate and evaluate similar
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techniques in COMPASS, to enable the exploration of different design solutions
for aerospace systems.

4.3.6 Parametric Models

COMPASS uses both qualitative and probabilistic model checking as underlying
techniques to perform different kinds of analyses such as the verification of
the model’s correctness or the evaluation of its performability characteristics
where, given an AADL model with associated error probabilities, the likelihood
of a system failure occurring within a given deadline is determined. In many
cases, some values such as the execution time of a thread or the probabilities
of basic faults are not known, or at best can be estimated by lower and upper
bounds. It would therefore be worthwhile to consider parametric models, in
which such values are left open, symbolically represented by some variables,
called parameters.

Parameter synthesis focuses on automatically computing the region of pa-
rameter values such that the resulting model satisfies its correctness or per-
formability requirements, see Figure [f.2] Although this problem is inherently
harder than model checking, in some cases model-checking techniques can be
generalized to solve the synthesis problem (see for example [24] [I1]). Also in
the case of probabilistic model checking, first results indicate that for a limited
number of parameters, solutions are feasible and scalable [30], 89]. They would
allow to derive quality requirements for electronic [46] or mechanical parts [43]
or software components [6] of a system to be developed.
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Figure 4.2: Possible result for analysis of parametric model with two parameters,
with green regions indicating where a safety threshold has been met.

A related problem is model repair, where one tries to tune the parameters
of a given model such that the resulting model satisfies a given correctness
or performability requirements. Regarding probability parameters, current ap-
proaches only consider changes of the transition probabilities, whereas modi-
fications of the underlying topological structure are not considered. Different
methods exist, such as global repair [8] and iterative local repair [45]. The repair
of AADL models can potentially lead to the synthesis of models that are com-
pliant with the given correctness or performability requirements. Similarly, the
techniques described in [23], which use parameter synthesis to find tighter con-
tract refinements, can be potentially generalized to synthesize correct contract
refinements.
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Figure 4.3: Possible result for multi-objective verification, indicating the range
of possible values that achieve the goal. From the bottom-left the areas indicate
an under-approximation A~, the actual range A and an over-approximation AT.
Values outside AT can never satisfy the objectives.

4.3.7 Multi-Objective Verification

Besides the correctness of their functional behavior, systems are required to
perform well. Performance of a system can be measured by, e.g., its average and
peak energy consumption, construction costs, and its availability and reliability.
These measures are often contradictory: using more power for data transmission
typically increases the reliability of communication, but also induces a higher
energy consumption. Less obvious mutual dependencies can emerge: optimizing
a system for (long-run) availability might reduce the (short-term) reliability.

The problem of finding optimal solutions with respect to different criteria
has been explored in [I1], where an approach based on the IC3 routine has been
presented, and demonstrated on applications from diagnosability synthesis and
product-line engineering.

In the context of probabilistic analysis, multi-objective model checking can
be employed. This is a fully automatic technique by which, based on a model
of the system under consideration and some measures-of-interest, a so-called
Pareto curve is deduced [34]. The latter gives an (often graphical, see Figure[4.3)
representation of the optimal strategy for resolving non-deterministic choices in
the system with respect to a given weighting of these measures. Currently, only
Markov Decision Processes can be handled by this technique [32] [40]. While
these support non-deterministic choices (to be optimised) and discrete proba-
bilities, they lack continuously distributed random delays, which are typically
used to describe, e.g., mechanical wear or other sources of failures.

Markov Automata [36] constitute a highly expressive formalism which extend
Markov Decision Processes by such random delays. They are used within the
performability engine of COMPASS 3.0, which is able to cope with optimizing
single measures on Markov Automata [36] such as minimizing the probability
to enter an error state within a given deadline. An extension of multi-objective
model checking to Markov automata would enable a trade-off analysis of several
measures-of-interest of AADL models. For example, the trade-off between using
more unreliable system components and the expected time until a system failure
might be analyzed.
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4.3.8 Model-Based Testing

All analysis possibilities supported by the COMPASS 3.0 toolset are model
based. That is, all analysis results are derived from the AADL model under
consideration. No guarantees are provided for given or possible realizations of
these models. Thus, there are currently no (or very limited) means to check the
conformance of a hardware/software implementation with respect to the AADL
model.

Model-based testing [20] is a technique that in principle allows for doing this.
The underlying idea of this approach is to steer the automated test generation
process by the AADL model. The tests are then turned into executable test
cases for a given implementation (commonly referred to as the system under
test); such test cases thus are depending on the implementation at hand. As
the model is used to steer the test generation, testing is sound — if an executable
test fails, the implementation does not conform to the AADL model. In theory
it is also complete — if an implementation passes all tests, the implementation
is compliant. In practice, however, not all tests can be run, and automated test
selection becomes relevant. Finally, an advantage of model-based testing is that
changes in the design/model can be reflected directly and automatically in the
generated tests.

The challenge is to exploit model-based testing for AADL models, tailor it to
the features of AADL (such as component-wise testing), and extend the exist-
ing model-based testing approaches and theories with notions such as real-time,
hybrid behavior, and randomness. This could give rise to a fully automated tech-
nique for checking the compliance of HW/SW implementations against AADL
models. This functionality could be also integrated in the TASTE environment.

Finally, model-based testing, and connection with implementation-level de-
ployment, could be coupled with the following techniques: property-preserving
model transformations and — following the contract-based approach — the gen-
eration of “test obligations” on the implementation that enforce contracts to
hold.

4.4 Community

We have identified the following measures to increase the involvement of the
community in the COMPASS development, and improve publicity and adver-
tisement.

e An outcome of the COMPASS3 project has been the setup of a com-
prehensive web site [29], with material on the COMPASS initiative and
toolset, past projects, examples and case studies, publications, etc. The
web site will be further updated and improved.

e A COMPASS-related workshop, namely the Workshop on Model Based
System and Software Engineering (MBSSE) — Future Directions, has been
organized on December 8th, 2016 at ESA. As for the COMPASS Workshop
in 2015, different stakeholders have been invited. At the workshop, we
have advertised and demonstrated the new COMPASS 3.0 toolset, we
have collected users’ requirements and needs, and received feedback on
the roadmap, that has been incorporated into this document. Further
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feedback from the community will be sought and will help in further tuning
the roadmap and steering future developments.

e In September 2017, FBK will host the SEFM [48], IMBSA [38] and Safe-
comp [47] conferences. These conferences may offer good opportunities to
disseminate the work done in the COMPASS initiative and collect feed-
back. Possibly, a cross-conference workshop could be organized.

e In order to get further feedback from the community, we will finalize the
questionnaire (compare Section , to be submitted to all the potential
users. The outcome of the questionnaire will help us in prioritizing the
needs and potential solutions.

e The COMPASS3 project has produced training material in the form of a
hands-on tutorial. Further training material, such as slides and material
for courses, could be prepared. Also, the COMPASS tutorial could further
elaborate on modeling guidelines and best practices.

e Further advertisement actions, such as creating a Wikipedia page for
COMPASS, or an entry in the ResearchGate portal, could be targeted.

e The collaboration with the AADL standardization committee will be con-
tinued, both triggering extensions of AADL by concepts that are relevant
for aerospace applications and adapting SLIM to changes in AADL and its
supporting annexes. In particular, it is planned to initiate a joint research
project to investigate enhanced mechanisms for integrating the nominal
and error behavior of a system.

4.5 Integration with ESA Initiatives

In order to pursue the integration of COMPASS with the other ESA initiatives
identified in the previous chapters, we foresee the following directions.

e Tight integration of COMPASS and TASTE so that the AADL model an-
alyzed with COMPASS is further detailed in TASTE for the deployment.
This would enable merging the functionalities of requirements analysis,
system design and system implementation into a unique tool chain. To
achieve this, we need to adopt a compatible description of the component
behavior and adopt a common semantics for the components interaction.
Based on this common semantics, the integration with TASTE could also
exploit the code generation capabilities of TASTE.

e Fnsure the compliance of the AADL models used in COMPASS and
TASTE with the Space Component Model of OSRA. Also, take into ac-
count the detailed data handling architecture.

e Enhance COMPASS with the library of components used in the OSRA.
e Enhance the OSRA components with CSSP properties.

e Investigate the possibility to have an FDIR reference architecture, along
the sames lines as the OSRA initiative, and supported by the COMPASS
toolset.
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Chapter 5

Planning

Based on the objectives, needs and potential future activities identified in, re-
spectively, Chapter [2] Chapter [3] and Chapter [4] in this chapter we identify a
set of actions to address the needs and reach the objectives, and we discuss their
priorities.

5.1 Actions

We split the set of actions into “block-removal” actions, i.e., short-term actions
that aim at mitigating/removing limitations/blocking aspects/bottlenecks that
currently affect the use of COMPASS, and “new-feature” actions, i.e., longer-
term actions that genuinely aim at extending the toolset with new features and
functionalities.

5.1.1 Block-Removal Actions
A1 Identify opportunities to make SLIM further compliant with AADL.

A2 Make SLIM compliant with AADL Error Model Annex V2, investigate
enhanced mechanisms for integrating the nominal and error behavior.

A3 Develop a case study of significant size.

A4 Identify opportunities for industrial evaluation and development of case
studies in industry.

A5 Develop a set of benchmarks.

A6 Identify a new licensing schema, open to non-ESA member states.
AT Extend the COMPASS continuous integration environment.

A8 Extend automated testing to GUI features.

A9 Dissemination at ESA Workshop in December 2016: collect further feed-
back on COMPASS roadmap.

A10 Add further material to the COMPASS web site.
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A11 Create further training material: slides, courses, PhD schools.
A12 Create Wikipedia page for COMPASS.
A13 Create entry in ResearchGate for COMPASS.

A14 Finalize questionnaire for end users, collect and evaluate results.

5.1.2 New-Feature Actions
A15 Make SLIM compliant with AADL V3.

A16 Investigate use of OSATE for SLIM models.

A17 Develop frontend for Altarica.

A18 Develop frontend for Simulink.

A19 Develop frontend for SysML.

A20 Integrate COMPASS with the Eclipse design environment.
A21 Integrate COMPASS with the Capella design environment.
A22 TImplement converter from SLIM models into Simulink.
A23 New functionality: model simulation with respect to scenarios.
A24 New functionality: model-to-model comparison.

A25 New functionality: displayer for finite state machines.

A26 New functionality: anytime FTA.

A27 Generate ECSS-compliant artifacts and documentation.
A28 Generate certification-oriented artifacts.

A29 New feature: validation of probabilistic properties.

A30 New feature: property realizability.

A31 New feature: property synthesis.

A32 Integrate flat FTA and contract-based (hierarchical) FTA.
A33 New functionality: extended DFT analysis.

A34 New functionality: FDI extended specification of diagnosability conditions
and local diagnosability.

A35 New functionality: extend FDI framework to recoverability.
A36 New functionality: synthesis of observables.
A37 New functionality: synthesis of FDI models.

A38 Review FDIR design process and use of TFPG analyses.
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A39
A40
A41

A42
A43
A44
A45
A46
A47

A48
A49
A50
A51
A52
A53

5.2 Traceability of Actions to Objectives

New functionality: TFPG tightening/synthesis.

New functionality: design space exploration.

New functionality: parametric error models, model repair/synthesis of

parameters for performability analysis.

New functionality: multi-objective verification.

New functionality: model-based testing.

Dissemination at SEFM/IMBSA /Safecomp 2017.

Dissemination to the AADL standardization committee.

Publish in international journals and conferences.

Integrate COMPASS and TASTE: support for multiple behavioral models,
reliability models, deployment and code generation.

New functionality: software model checking for TASTE.

Make COMPASS models compliant with OSRA.

ADD OSRA library of components to COMPASS.

ADD CSSP properties to OSRA components.

Define FDIR reference architecture.

New functionality: change management, model change and evolution.

In this section we trace the actions identified in Section to the objectives
they aim to reach. The traceability information is shown in Table
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A46: Publications X X X X
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A48: Software MC X X X X X X
A49: OSRA compl. X X X X X X X X X X X X
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Table 5.1: Traceability of actions to objectives.

5.3 Action Priorities

In this section we rank actions, based on priorities. This is done in Table
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Priority Notes
Al: AADL compl. medium Needs further analysis
A2: EM Annex V2 medium Needs further analysis
A3: Case study high Blocking for improving scalability
A4: Ind. Evaluation high May need funding schema
Ab5: Benchmarks high Blocking for improving scalability
A6: New license high Blocking for use in non-ESA member states
AT7: Extend CI medium Many features already available
A8: GUI testing low/medium | Currently done via manual TPs
A9: ESA Workshop high -
A10: Web site medium Already contains a lot of material
A11: Training mater. | medium/high | Tutorial can be a starting point
A12: Wikipedia medium -
A13: ResearchGate medium -
Al14: Questionnaire high -
Al15: AADL V3 medium AADL V3 to be delivered in 2018/2019
A16: OSATE medium -
A17: Altarica front. high -
A18: Simulink front. high -
A19: SysML front. high -
A20: Eclipse integr. medium/high | -




Priority

Notes

A21:
A22:
A23:
A24:
A25:
A26:
A27:
A28:
A29:
A30:
A31:
A32:
A33:
A34:
A35:
A36:
A37:
A38:
A39:
A40:
A41:
A42:
A43:
A44:
A45:
A46:
A47:
A48:
A49:
A50:
A51:
A52:

Capella integr.
Simulink conv.
Scenario simul.
Model compar.
FSM displayer
Anytime FTA
ECSS document.
Certif. artif.
Prob. prop. v.
Realizability
Prop. synth.
Flat/hier. FTA
Extended DFT
Extended FDI
Recoverability
Observ. synth.
FDI synth.
FDIR process
TFPG tighten.
Design S. Expl.
Param. error m.
Multi-obj. ver.
Model-b. testing
Confer. 2017
AADL committ.
Publications
TASTE integr.
Software MC
OSRA compl.
OSRA library
CSSP in OSRA
FDIR ref. arch.

A53 Change manag.

medium/high
medium
medium
medium
medium
medium/high
medium/high
low/medium
medium
medium
medium
medium/high
medium
medium
medium/high
medium
low-medium
high

medium
medium/high
medium
medium
medium

high
medium/high
medium

high

medium
medium/high
medium/high
medium/high
medium

high

Prototype already available
Already available, to be integrated
Important, but future work

Already available, to be integrated
Already available, to be integrated
Prototype available, but not fully mature
Preliminary work done in FAME
Already available, to be integrated
Previous work done with NASA

Talks, demos, tutorial, joint workshop

Table 5.2: Action priority.
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